Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Biomolecules ; 13(3)2023 03 03.
Article in English | MEDLINE | ID: covidwho-2267299

ABSTRACT

In late 2019, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of coronavirus disease 2019 (COVID-19) emerged in China and spread rapidly around the world, causing an ongoing pandemic of global concern. COVID-19 proceeds with moderate symptoms in most patients, whereas others experience serious respiratory illness that requires intensive care treatment and may end in death. The severity of COVID-19 is linked to several risk factors including male sex, comorbidities, and advanced age. Apart from respiratory complications, further impairments by COVID-19 affecting other tissues of the human body are observed. In this respect, the human kidney is one of the most frequently affected extrapulmonary organs and acute kidney injury (AKI) is known as a direct or indirect complication of SARS-CoV-2 infection. The aim of this work was to investigate the importance of the protein angiotensin-converting enzyme 2 (ACE2) for a possible cell entry of SARS-CoV-2 into human kidney cells. First, the expression of the cellular receptor ACE2 was demonstrated to be decisive for viral SARS-CoV-2 cell entry in human AB8 podocytes, whereas the presence of the transmembrane protease serine 2 (TMPRSS2) was dispensable. Moreover, the ACE2 protein amount was well detectable by mass spectrometry analysis in human kidneys, while TMPRSS2 could be detected only in a few samples. Additionally, a negative correlation of the ACE2 protein abundance to male sex and elderly aged females in human kidney tissues was demonstrated in this work. Last, the possibility of a direct infection of kidney tubular renal structures by SARS-CoV-2 was demonstrated.


Subject(s)
COVID-19 , Aged , Female , Humans , Male , Angiotensin-Converting Enzyme 2 , Kidney/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/metabolism
2.
Antiviral Res ; 209: 105475, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2240582

ABSTRACT

SARS-CoV-2 is the causative agent of the immune response-driven disease COVID-19 for which new antiviral and anti-inflammatory treatments are urgently needed to reduce recovery time, risk of death and long COVID development. Here, we demonstrate that the immunoregulatory kinase p38 MAPK is activated during viral entry, mediated by the viral spike protein, and drives the harmful virus-induced inflammatory responses. Using primary human lung explants and lung epithelial organoids, we demonstrate that targeting p38 signal transduction with the selective and clinically pre-evaluated inhibitors PH-797804 and VX-702 markedly reduced the expression of the pro-inflammatory cytokines IL6, CXCL8, CXCL10 and TNF-α during infection, while viral replication and the interferon-mediated antiviral response of the lung epithelial barrier were largely maintained. Furthermore, our results reveal a high level of drug synergism of both p38 inhibitors in co-treatments with the nucleoside analogs Remdesivir and Molnupiravir to suppress viral replication of the SARS-CoV-2 variants of concern, revealing an exciting and novel mode of synergistic action of p38 inhibition. These results open new avenues for the improvement of the current treatment strategies for COVID-19.

3.
Cells ; 12(4)2023 02 08.
Article in English | MEDLINE | ID: covidwho-2234951

ABSTRACT

Viral myocarditis is pathologically associated with RNA viruses such as coxsackievirus B3 (CVB3), or more recently, with SARS-CoV-2, but despite intensive research, clinically proven treatment is limited. Here, by use of a transgenic mouse strain (TG) containing a CVB3ΔVP0 genome we unravel virus-mediated cardiac pathophysiological processes in vivo and in vitro. Cardiac function, pathologic ECG alterations, calcium homeostasis, intracellular organization and gene expression were significantly altered in transgenic mice. A marked alteration of mitochondrial structure and gene expression indicates mitochondrial impairment potentially contributing to cardiac contractile dysfunction. An extended picture on viral myocarditis emerges that may help to develop new treatment strategies and to counter cardiac failure.


Subject(s)
COVID-19 , Coxsackievirus Infections , Myocarditis , Virus Diseases , Mice , Animals , Mice, Transgenic , Enterovirus B, Human , SARS-CoV-2
4.
Pharmaceutics ; 14(9)2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2006163

ABSTRACT

The coronavirus disease 2019 (COVID-19) represents a global public health burden. In addition to vaccination, safe and efficient antiviral treatment strategies to restrict the viral spread within the patient are urgently needed. An alternative approach to a single-drug therapy is the combinatory use of virus- and host-targeted antivirals, leading to a synergistic boost of the drugs' impact. In this study, we investigated the property of the MEK1/2 inhibitor ATR-002's (zapnometinib) ability to potentiate the effect of direct-acting antivirals (DAA) against SARS-CoV-2 on viral replication. Treatment combinations of ATR-002 with nucleoside inhibitors Molnupiravir and Remdesivir or 3C-like protease inhibitors Nirmatrelvir and Ritonavir, the ingredients of the drug Paxlovid, were examined in Calu-3 cells to evaluate the advantage of their combinatory use against a SARS-CoV-2 infection. Synergistic effects could be observed for all tested combinations of ATR-002 with DAAs, as calculated by four different reference models in a concentration range that was very well-tolerated by the cells. Our results show that ATR-002 has the potential to act synergistically in combination with direct-acting antivirals, allowing for a reduction in the effective concentrations of the individual drugs and reducing side effects.

5.
Emerg Microbes Infect ; 11(1): 2160-2175, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1997031

ABSTRACT

Pandemic outbreaks of viruses such as influenza virus or SARS-CoV-2 are associated with high morbidity and mortality and thus pose a massive threat to global health and economics. Physiologically relevant models are needed to study the viral life cycle, describe the pathophysiological consequences of viral infection, and explore possible drug targets and treatment options. While simple cell culture-based models do not reflect the tissue environment and systemic responses, animal models are linked with huge direct and indirect costs and ethical questions. Ex vivo platforms based on tissue explants have been introduced as suitable platforms to bridge the gap between cell culture and animal models. We established a murine lung tissue explant platform for two respiratory viruses, influenza A virus (IAV) and SARS-CoV-2. We observed efficient viral replication, associated with the release of inflammatory cytokines and the induction of an antiviral interferon response, comparable to ex vivo infection in human lung explants. Endolysosomal entry could be confirmed as a potential host target for pharmacological intervention, and the potential repurposing potentials of fluoxetine and interferons for host-directed therapy previously seen in vitro could be recapitulated in the ex vivo model.


Subject(s)
COVID-19 , Lung , Orthomyxoviridae Infections , Animals , Antiviral Agents/pharmacology , COVID-19/pathology , Fluoxetine/pharmacology , Humans , Influenza A virus/physiology , Influenza, Human/pathology , Interferons , Lung/virology , Mice , Orthomyxoviridae Infections/pathology , SARS-CoV-2/physiology , Tissue Culture Techniques , Virus Replication
6.
Cell Mol Life Sci ; 79(1): 65, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1616112

ABSTRACT

Coronavirus disease 2019 (COVID-19), the illness caused by a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 260 million confirmed infections and 5 million deaths to date. While vaccination is a powerful tool to control pandemic spread, medication to relieve COVID-19-associated symptoms and alleviate disease progression especially in high-risk patients is still lacking. In this study, we explore the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections. We find that SARS-CoV-2 transiently activates Raf/MEK/ERK signaling in the very early infection phase and that ERK1/2 knockdown limits virus replication in cell culture models. We demonstrate that ATR-002, a specific inhibitor of the upstream MEK1/2 kinases which is currently evaluated in clinical trials as an anti-influenza drug, displays strong anti-SARS-CoV-2 activity in cell lines as well as in primary air-liquid-interphase epithelial cell (ALI) cultures, with a safe and selective treatment window. We also observe that ATR-002 treatment impairs the SARS-CoV-2-induced expression of pro-inflammatory cytokines, and thus might prevent COVID-19-associated hyperinflammation, a key player in COVID-19 progression. Thus, our data suggest that the Raf/MEK/ERK signaling cascade may represent a target for therapeutic intervention strategies against SARS-CoV-2 infections and that ATR-002 is a promising candidate for further drug evaluation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Fenamates/pharmacology , MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Adult , Animals , COVID-19/metabolism , Cell Line , Cells, Cultured , Chlorocebus aethiops , Cytokines/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/metabolism , SARS-CoV-2/physiology , Vero Cells , Virus Replication/drug effects
7.
Pharmaceutics ; 13(9)2021 Sep 03.
Article in English | MEDLINE | ID: covidwho-1390724

ABSTRACT

The ongoing SARS-CoV-2 pandemic requires efficient and safe antiviral treatment strategies. Drug repurposing represents a fast and low-cost approach to the development of new medical treatment options. The direct antiviral agent remdesivir has been reported to exert antiviral activity against SARS-CoV-2. Whereas remdesivir only has a very short half-life time and a bioactivation, which relies on pro-drug activating enzymes, its plasma metabolite GS-441524 can be activated through various kinases including the adenosine kinase (ADK) that is moderately expressed in all tissues. The pharmacokinetics of GS-441524 argue for a suitable antiviral drug that can be given to patients with COVID-19. Here, we analyzed the antiviral property of a combined treatment with the remdesivir metabolite GS-441524 and the antidepressant fluoxetine in a polarized Calu-3 cell culture model against SARS-CoV-2. The combined treatment with GS-441524 and fluoxetine were well-tolerated and displayed synergistic antiviral effects against three circulating SARS-CoV-2 variants in vitro in the commonly used reference models for drug interaction. Thus, combinatory treatment with the virus-targeting GS-441524 and the host-directed drug fluoxetine might offer a suitable therapeutic treatment option for SARS-CoV-2 infections.

8.
Br J Pharmacol ; 178(11): 2339-2350, 2021 06.
Article in English | MEDLINE | ID: covidwho-1171214

ABSTRACT

BACKGROUND AND PURPOSE: The SARS-COV-2 pandemic and the global spread of coronavirus disease 2019 (COVID-19) urgently call for efficient and safe antiviral treatment strategies. A straightforward approach to speed up drug development at lower costs is drug repurposing. Here, we investigated the therapeutic potential of targeting the interface of SARS CoV-2 with the host via repurposing of clinically licensed drugs and evaluated their use in combinatory treatments with virus- and host-directed drugs in vitro. EXPERIMENTAL APPROACH: We tested the antiviral potential of the antifungal itraconazole and the antidepressant fluoxetine on the production of infectious SARS-CoV-2 particles in the polarized Calu-3 cell culture model and evaluated the added benefit of a combinatory use of these host-directed drugs with the direct acting antiviral remdesivir, an inhibitor of viral RNA polymerase. KEY RESULTS: Drug treatments were well-tolerated and potently impaired viral replication. Importantly, both itraconazole-remdesivir and fluoxetine-remdesivir combinations inhibited the production of infectious SARS-CoV-2 particles > 90% and displayed synergistic effects, as determined in commonly used reference models for drug interaction. CONCLUSION AND IMPLICATIONS: Itraconazole-remdesivir and fluoxetine-remdesivir combinations are promising starting points for therapeutic options to control SARS-CoV-2 infection and severe progression of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Hepatitis C, Chronic , Pharmaceutical Preparations , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Fluoxetine/pharmacology , Hepatitis C, Chronic/drug therapy , Humans , Itraconazole/pharmacology , SARS-CoV-2
9.
Emerg Microbes Infect ; 9(1): 2245-2255, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-795734

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic caused by the Severe Acute Respiratory Syndrome Related Coronavirus 2 (SARS-CoV-2) is a global health emergency. As only very limited therapeutic options are clinically available, there is an urgent need for the rapid development of safe, effective, and globally available pharmaceuticals that inhibit SARS-CoV-2 entry and ameliorate COVID-19 severity. In this study, we explored the use of small compounds acting on the homeostasis of the endolysosomal host-pathogen interface, to fight SARS-CoV-2 infection. We find that fluoxetine, a widely used antidepressant and a functional inhibitor of acid sphingomyelinase (FIASMA), efficiently inhibited the entry and propagation of SARS-CoV-2 in the cell culture model without cytotoxic effects and also exerted potent antiviral activity against two currently circulating influenza A virus subtypes, an effect which was also observed upon treatment with the FIASMAs amiodarone and imipramine. Mechanistically, fluoxetine induced both impaired endolysosomal acidification and the accumulation of cholesterol within the endosomes. As the FIASMA group consists of a large number of small compounds that are well-tolerated and widely used for a broad range of clinical applications, exploring these licensed pharmaceuticals may offer a variety of promising antivirals for host-directed therapy to counteract enveloped viruses, including SARS-CoV-2.


Subject(s)
Antidepressive Agents/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/virology , Enzyme Inhibitors/pharmacology , Fluoxetine/pharmacology , Pneumonia, Viral/virology , Betacoronavirus/physiology , COVID-19 , Cell Line , Endosomes/virology , Humans , Pandemics , SARS-CoV-2 , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL